
Journal of Physics A: Mathematical and Theoretical

PAPER

Machine learning as ecology
To cite this article: Owen Howell et al 2020 J. Phys. A: Math. Theor. 53 334001

View the article online for updates and enhancements.

This content was downloaded from IP address 5.81.131.51 on 29/09/2020 at 23:15

https://doi.org/10.1088/1751-8121/ab956e
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssVlDwwuv8_hCB6ePwEwTzfeSlppCXekYa8c5nwy6kKQ_GhtwO5CILzIlKB0r7caCSMAVGVlkgjMBxdimxKiZ7OEmgWSdntXpVJx2M2uebUJgA9FMGjDi2DkRnGkqqcSclQmBhbsR-0H-sAp6sqfdxnHu5c58O3iLINgSJixO12piws6R2cNt9dRCr6DaVy9GenmDDAQ1FybT0I_jl5QeWqYpxdD6wReqGranQr8yKbRTTuRxAT&sig=Cg0ArKJSzKCS-Uu-a7uI&adurl=http://iopscience.org/books

Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 53 (2020) 334001 (18pp) https://doi.org/10.1088/1751-8121/ab956e

Machine learning as ecology

Owen Howell1,4 , Cui Wenping1,2, Robert Marsland III1

and Pankaj Mehta1,3

1 Department of Physics, Boston University, 590 Commonwealth Ave., Boston, MA
02215, United States of America
2 Department of Physics, Boston College, 140 Commonwealth Avenue, Chestnut
Hill, MA 02467, United States of America
3 College of Data Science, Boston University, Boston, Massachusetts 02215,
United States of America

E-mail: olh20@bu.edu and pankajm@bu.edu

Received 3 December 2019, revised 12 May 2020
Accepted for publication 21 May 2020
Published 29 July 2020

Abstract
Machine learning methods have had spectacular success on numerous prob-
lems. Here we show that a prominent class of learning algorithms—including
support vector machines (SVMs)—have a natural interpretation in terms of
ecological dynamics. We use these ideas to design new online SVM algo-
rithms that exploit ecological invasions, and benchmark performance using the
MNIST dataset. Our work provides a new ecological lens through which we
can view statistical learning and opens the possibility of designing ecosystems
for machine learning.

Keywords: machine learning, support vector machines, ecology

S Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

1. Introduction

Machine learning (ML) is one of the most exciting and useful areas of modern computer science
[1, 2]. One common machine learning task is classification: given labeled data from one or
more categories, predict the category of a new, unlabeled data point. Another common task
is to perform outlier detection (i.e. find data points that appear to be irregular). Both of these
difficult problems can be solved efficiently using kernel-based methods such as support vector
machines (SVMs) [1, 3, 4].

The basic idea behind SVMs is to use a non-linear map to embed the input data in a
high-dimensional feature space where it can be classified using a simple linear classifier

4Author to whom any correspondence should be addressed.

1751-8121/20/334001+18$33.00 © 2020 IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1751-8121/ab956e
https://orcid.org/0000-0002-5445-7810
mailto:olh20@bu.edu
mailto:pankajm@bu.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/ab956e&domain=pdf&date_stamp=2020-7-29
https://doi.org/10.1088/1751-8121/ab956e

J. Phys. A: Math. Theor. 53 (2020) 334001 O Howell et al

Figure 1. Overview of support vector machines (SVMs). Data points are mapped into
a high-dimensional feature space via φ(X) where they can be separated using a linear
decision surface. The SVM tries to maximize the distance (margin) from the deci-
sion boundary to the nearest data point. Points that lie on the maximum-margin planes
(circled) are called support vectors and used to classify new, unlabeled data.

Table 1. Conceptual mapping between SVMs and ecology.

SVM Ecology

Data point Species
KKT multiplier Species abundance
Feature space Trait space
Kernel Niche overlap
Support vectors Species that survive in ecosystem

(see figure 1). To ensure good generalization and avoid overfitting, SVMs focus on the ‘hardest
to classify’ points that lie closest to the linear decision surface in the high-dimensional feature
space. These points are called ‘support vectors’ and play a prominent role in SVM algorithms.

The real power and utility of SVMs comes from the fact that these ideas can be implemented
quickly and efficiently using kernel methods and quadratic optimization [1, 4]. The idea of a
kernel function is to replace the explicit mapping to a high-dimensional feature space with
an implicit kernel function that specifies the similarity (dot product) between data points in
the high-dimensional feature space. Once the kernel function is specified, the support vectors
and decision surface can be easily computed as an instance of a quadratic programming (QP)
problem. There exist efficient exact and approximate optimization algorithms for QP that scale
weakly polynomially in input size.

The original motivation for SVMs and other kernel methods were deep results in statisti-
cal learning theory concerning generalization errors [3–5]. Here, we show that these statis-
tical problems can also be understood using ideas from niche theory in community ecology
(see table 1) [6, 7]. Our construction exploits the recently discovered duality between eco-
logical dynamics and constrained optimization problems, specifically quadratic programming
[8–10]. In particular, we show that data points can be viewed as ‘species’ that compete
for resources, with each feature identified with a distinct resource, and the kernel function
specifying the niche overlap between species/datapoints [11, 12].

This mapping allows us to reinterpret SVMs as complex ecosystems that self-organize into
ecologically stable steady states defined by their support vectors. This new ecological per-
spective naturally leads to a new online algorithms based on ecological invasion for SVMs as
well as for outlier detection kernel methods such as support vector data description (SVDD)

2

J. Phys. A: Math. Theor. 53 (2020) 334001 O Howell et al

[13, 14]. We also show that our ecological SVDD method is equivalent to the online algorithm
derived in [15].

2. SVMs as QP

Consider a classification problem where each p-dimensional data point xi (i = 1, 2, 3, . . . , N)
comes with a binary label ti = ±1. An SVM fits a linear classifier to the data of the form

y(x) = wTφ(x) + b (1)

where φ : Rp → R
q, q � p denotes a mapping to a high-dimensional feature space. The scalar

offset b and the q-dimensional weight vector w are tunable model parameters.
A new data point xk is assigned to class tk = +1 if y(xk) > 0 and to class tk = −1 if

y(xk) < 0. To begin, we restrict our discussion to linearly separable datasets, i.e., datasets for
which exists a hyperplane in the feature space φ(x) that partitions the dataset into two regions
with every point in class +1 in one region and every point in class −1 in the other (see figure 1).

SVMs are trained by maximizing the margin, defined as the Euclidean distance from the
hyperplane y(x) = 0 (the decision boundary) to the nearest data point. It is easy to show that
distance from the point xi to the line y(x) = 0 is given by the expression ti

y(xi)
|w| . Maximizing

the margin corresponds to choosing the parameters w and b so that

w, b = arg maxw,b

{
1
|w| min

i
[ti(w

Tφ(xi) + b)]

}
(2)

The above maximization problem can be recast by noting that equation (2) has a gauge degree
of freedom: the decision surface is invariant under the scaling transformation w → Dw and
b → Db [1, 3, 4]. We can fix this gauge by choosing the margin to be exactly 1. In this gauge,
equation (2) is equivalent to the following convex quadratic programming problem

arg minw,b
1
2
|w|2

subject to ti(w
Tφ(xi) + b) � 1 for all i,

(3)

where i labels the N data points in the training dataset.
As with all constrained optimization problems, we can also solve the equivalent dual

optimization problem by introducing generalized Lagrange multipliers ai (often called KKT
multipliers in the optimization literature) corresponding to each of the inequality constraints
in (3) [16]. Since there is one constraint per data point i, we can uniquely associate each ai

with a data point in the training set. For data points that saturate the inequality in (3), ai is
positive, and acts as an ordinary Lagrange multiplier to enforce the constraint. For the rest of
the data points, no Lagrange multiplier is required, and ai = 0. These observations give rise
to the Karush–Kuhn–Tucker conditions, which are necessary and sufficient to determine the
optimum [1, 3, 4]:

0 = ∇w,bL(w, b, ai)

1 � ti(w
Tφ(xi) + b)

0 � ai

0 = ai[ti(wTφ(xi) + b) − 1]

(4)

where the last three expressions hold for all i, with the SVM Lagrangian

3

J. Phys. A: Math. Theor. 53 (2020) 334001 O Howell et al

L(w, b, ai) =
1
2
|w|2 −

N∑
i=1

ai[ti(wTφ(xi) + b) − 1]. (5)

Solving the first condition for w and b yields the equations w =
∑N

i=1 aitiφ(xi) and∑N
i=1 aiti = 0. Inserting these results into equation (5) gives equations for optimal ai:

argmaxai
L(ai) =

N∑
i=1

ai −
1
2

N∑
i, j=1

aia jtit jK(xi, x j)

subject to 0 � ai for all i

and
N∑

i=1

aiti = 0

(6)

L(ai) is called the dual SVM Lagrangian. In writing this equation, we have introduced the
kernel function K(xi, xj) ≡ φT(xi)φ(xj) which is just the dot product of the data points in the
high-dimensional feature space φ. In this work we will specifically focus on the case where
K(xi, xj) ≡ φT(xi)φ(xj) � 0. This is reasonable as many commonly used kernels are positive
definite. For example, the radial basis function kernel defined as K(xi, x j) = exp(−1

2σ2 ‖xi −
x j‖2) is often used in the machine learning community [17].

In this dual formulation, the support vectors correspond precisely to those data points xk for
which the corresponding KKT multiplier is greater than zero ak > 0. The SVM can be used to
classify a new point x using t = sign(y(x)) with

y(x) =
∑
i∈S

tiaiK(x, xi) + b

b =
1
|S|

∑
i∈S

⎡
⎣ti −

∑
j∈S

a jtjK(xi, x j)

⎤
⎦

and S the set of support vectors.

3. The ecology of SVMs

Consider the maximization of the dual Lagrangian L(ai) given in equation (6), subject to the
constraints

∑N
i=1 aiti = 0 and ai � 0. Recently, it was shown there exists a duality between

constrained optimization and ecological dynamics [8]. Using this duality, it is straightfor-
ward to show that the solution to this problem is encoded in the steady state of a generalized
Lotka–Volterra equation of the form

dai

dt
= ai

⎡
⎣1 + λti −

N∑
j=1

titjK(xi, xj)a j

⎤
⎦

dλ
dt

= −
N∑

i=1

aiti,

(7)

This system of differential equations has a natural ecological interpretation as the dynamics of
N species with abundances ai (i = 1, . . . , N) whose interactions are represented by the matrix
αij with elements

4

J. Phys. A: Math. Theor. 53 (2020) 334001 O Howell et al

αi j = tit jK(xi, x j). (8)

Since each ai corresponds to a data point, we can think of this as an ecological network where
data points i and j from the same class (ti = tj) compete with each other (i.e. αij > 0) whereas
species of from different classes (ti = −tj) are mutalistic (i.e.αij < 0). The level of competition
or mutualism depends on the overlap kernel K(xi, xj) with similar data points having stronger
interactions.

Ecologically, a combination of competitive and mutalistic interactions such as these
naturally occur in plant–pollinator networks [18]. In such networks, different species of plants
compete with each other for pollinators, pollinators compete with each other for plants, and
plant–pollinators interactions are beneficial for both kinds of species. The λ term, which is
the Lagrange multiplier for the constraint

∑N
i=1 tiai, corresponds to an abiotic environmental

factor that is produced or consumed by different species. In this plant–pollinator analogy, λ
could represent an environmental CO2 concentration. Specifically, plants consume CO2 and
benefit from high CO2 concentration while pollinators produce CO2 and are harmed by high
CO2 concentration.

Note that this interpretation differs from the consumer–resource interpretation given to a
generic constrained optimization problem in [8]. The Lagrange multiplier λ plays the role of a
‘resource’, but is not required to be positive, since it is enforcing an equality constraint rather
than an inequality. The variables ai of the optimization are now treated as the species rather
than as resources.

These observations suggest a new ecological interpretation of SVMs (see table 1). Data
points act like species that either compete or promote each others’ survival. The abundance of
each species is the value of KKT multiplier that enforces the corresponding constraint in (3).
Since only the support vectors have non-zero KKT multipliers, the only data points that survive
in the ecosystem are support vectors. As noted above, data points from the same category
compete with each whereas data points from different categories are mutualistic. As is widely
appreciated in the ecological literature, the ecological dynamics depends only on the overlap of
resource utilization function encoded in the similarity kernel K(xi, xj) between points [11]. The
data points most likely to survive in the ecosystem are data points from one category that are
similar to data points from the opposite category since they have large mutualistic interactions.
For this reason, the data points that survive in the ecosystem are precisely those lie near the
boundary between the two categories, that is, the support vectors.

4. EcoSVM: An online SVM algorithm

One interesting class of processes that has been extensively studied in the ecological literature
is ecological invasion [9, 19–21]. In the context of SVMs, invasion by new species corresponds
to addition of a new data point (x0, t0) to our existing dataset. If we denote the existing support
vectors by the set S, the condition for a successful invasion is the intuitive statement that the
initial growth rate must be positive when the new data point is introduced into the ecosystem:

0 <
1
a0

da0

dt
= 1 + λt0 −

∑
j∈S

t0t jK(x0, xj)a j. (9)

The variable λ may be eliminated from this equation. Specifically, let ak > 0 be a support
vector. Then,

0 = 1 + λtk −
∑
j∈S

tktjK(xk, xj)a j.

5

J. Phys. A: Math. Theor. 53 (2020) 334001 O Howell et al

Algorithm 1. EcoSVM psuedocode.a

Procedure initialize (D = {(xi, ti)
Ns
i=1})

ai ← argmaxai
L(ai)

with ai subject to 0 � ai for all i = 1, 2, . . . , Ns

and
∑Ns

i=1 aiti = 0
S = {(ai, xi, ti)|ai > 0}
Return S

Procedure EcoSVM ((x, t), S)
Invasion = (1 − t1t −

∑
j∈S ttj(K(x1, xj) − K(x, xj))aj)

If invasion < 0:
Return S

If invasion > 0:
D = {(x, t)} ∪ {(xi, ti)|(ai, xi, ti) ∈ S}
S = intialize(D)

Return S

aPsuedocode for the EcoSVM algorithm: the subroutine initialize
takes a dataset D = {(xi, ti)

Ns
i=1} (Ns is the size of the dataset) as an

input and returns S = {(ai, xi, ti)|ai > 0}, the set of KKT multipli-
ers ai > 0 greater then zero and the corresponding data points xi

and labels ti. The routine EcoSVM takes a new data point (x, t) and
the set of active support vectors and data points S = (ai, xi, ti) and
computes the new set of support vectors using the criterion (10).

solving for λ gives

λ = −tk +
∑
j∈S

tjK(xk, xj)a j.

Inserting this equation for λ back into equation (9) gives

0 <
1
a0

da0

dt
= 1 − tkt0 −

∑
j∈S

t0t j(K(xk, x j) − K(x0, x j))a j. (10)

When this equation is satisfied the new data point can successfully invade the ecosystem and
fixate (i.e. become a support vector). If the condition is not satisfied, the point goes ‘extinct’ and
the set of support vectors does not change. If a data point can invade successfully, the species
abundances ‘ai’ are modified and can be found by solving for the steady state of (7) using
either forward integration, quadratic programming [8] or any other online SVM approximation
scheme [22–27]. This suggests a simple new approximate algorithm for online SVM learning
we term the EcoSVM. In online learning, rather than seeing all the data at once, training data is
presented in a sequential pattern. In the EcoSVM algorithm when a new training data point is
presented, the invasion condition (10) is used to determine whether it can successfully invade
the ecosystem. If it cannot, the training data point is discarded. If it can, we recompute the
steady-states using equation (7). We will also generalize this algorithm to the case of non-
separable data (algorithm 1).

Because we use the ecologically inspired invasion condition, there is no need to recompute
the support vectors at each learning step, unlike the online SVM algorithms that were previ-
ously suggested [22–27]. The EcoSVM algorithm also reduces the amount of training data that
needs to be stored in memory. Specifically, instead of needing to store all data points, we keep
only the support vectors. Since the number of support vectors is in general a small subset of
all the training data, this greatly reduces the memory requirements. This increased efficiency

6

J. Phys. A: Math. Theor. 53 (2020) 334001 O Howell et al

comes at the expense of introducing small errors that come from the contingent nature of eco-
logical invasions. Occasionally, a successful invasion by a new species (new data point) will
allow a species that could not previously invade the ecosystem (designated not a support vec-
tor) to become viable (a support vector). This kind of historical contingency introduces errors
in our online algorithm since we discard all data points that do not fixate in the ecosystem. In
practice, we find that these errors are generally quite small for real-world datasets.

5. Adding the slack

In the previous sections we have focused on datasets that are linearly separable. For the
majority of practical applications this is not the case. For overlapping class distributions, the
primal SVM problem is modified so that points are allowed to be on the wrong side of the
margin. Specifically, slack variables ζ i � 0 are introduced with tiy(xi) � 1 − ζ i. This should
be compared with the linearly separable case where the constraint is instead tiy(xi) � 1. The
new minimization is weighted to penalize points that lie on the wrong side of the margin

arg minw,b,ζi

1
2
|w|2 + C

N∑
i=1

ζi

subject to, for all i

ti(wTφ(xi) + b) � 1

tiy(xi) � 1 − ζi

ζi � 0

(11)

where the slack parameter C determines the extent to which points on the wrong side of the mar-
gin are tolerated. In practice, C is a hyper-parameter that is tuned to minimize generalization
error. The KKT conditions for this new minimization problem are:

0 = ∇w,b,ζi L(w, b, ζi, ai,μi)

1 − ζi � tiy(xi)

0 � ai

0 = ai[tiy(xi) − 1 + ζi]

0 � ζi

0 � μi

0 = μiζi

(12)

where the μi are additional KKT multipliers enforcing the constraints ζ i � 0, and the primal
Lagrangian is

L(w, b, ζi, ai,μi) =
1
2
|w|2 +

N∑
i=1

[Cζi − ai(tiy(xi) − 1 + ζi) − μiζi]

7

J. Phys. A: Math. Theor. 53 (2020) 334001 O Howell et al

Minimizing the Lagrangian ∂L
∂wi

= 0, ∂L
∂b = 0 and ∂L

∂ζi
= 0 gives equations

w =

N∑
i=1

tiaiφ(xi) ,
N∑

i=1

aiti = 0 ai = C − μi (13)

Each μi � 0 so the last equation is equivalent to ai � C. Inserting these results into the primal
Lagrangian transforms the problem into maximization of the dual SVM Lagrangian

argmaxai
L(ai) =

N∑
i=1

ai −
1
2

N∑
i, j=1

aia jtitjK(xi, xj)

subject to 0 � ai � C for all i

and
N∑

i=1

aiti = 0

(14)

We can enforce the second constraint by introducing a Lagrange multiplier λ, resulting in
the following set of equations for the optimal ai:

argmaxai,λ
L(ai,λ)

subject to 0 � ai � C for all i
(15)

with Lagrangian

L(ai,λ) =
N∑

i=1

ai −
1
2

N∑
i, j=1

aia jtitjK(xi, xj) + λ

N∑
i=1

tiai (16)

Using the duality described in [8], we can map the quadratic programming problem (15) to
ecological dynamics

dai

dt
= ai(C − ai)(1 + λti −

N∑
j=1

titjK(xi, xj)a j)

dλ
dt

= −
N∑

i=1

aiti.

(17)

where the prefactor ai(C − ai) enforces the constraints on ai. Equation (17) has a similar inter-
pretation to the Lotka–Volterra equations for the linearly separable case, with the additional
(C − ai) factor can be interpreted as each species having a maximum carrying capacity C [28].

Now consider the addition of new point P0 = (x0, t0). This point changes the set of support
vectors if the initial growth rate is positive.

0 <
1
a0

da0

dt
∝ 1 + λt0 −

N∑
j=1

t0tjK(x0, xj)a j (18)

8

J. Phys. A: Math. Theor. 53 (2020) 334001 O Howell et al

Let xk be any ‘active’ support vector, that is, a point whose KKT multiplier ak satisfies
C > ak > 0. Then, solving the steady state equation (17) for auxiliary variable λ gives

λ = −tk +
N∑

i=1

tiK(xi, xk)ai (19)

Inserting this into equation (18) gives the invasion condition

0 <
1
a0

da0

dt
= 1 − tkt0 +

N∑
i=1

tit0(K(xi, xk) − K(xi, x0))ai (20)

This invasion condition can be used to construct an online learning algorithm. Specifically,
when a new data point is presented, the condition (20) can be used to determine whether the
new point changes the set of support vectors without having to recompute the minimum of
(14). The nonzero KKT multipliers ai > 0 and corresponding support vectors xi are kept in
memory. Note that (20) is identical to the invasion criterion (10) in the linearly separable case.
The only difference between our algorithm for linearly separable and non-linearly separable
datasets is due to the presence of the ai � C constraint in the non-linear problem when the
invasion condition is satisfied and the new steady state must be recomputed (compare (6) and
(14)).

A new point x is classified using t = sign(y(x)) with

y(x) =
∑

i

tiaiK(x, xi) + b

b =
1
|M|

∑
i∈M

⎡
⎣ti −

∑
j∈S

a jtjK(xi, xj)

⎤
⎦

where S is the full set of support vectors and M is the subset of active support vectors. Note
that this formula requires at least one active support vector.

6. Performance on toy models

We test our proposed online learning algorithms on two toy datasets. We consider one dataset
that is linearly separable in the feature space φ(x) = x. Specifically, we choose all data points
to be drawn from the [0, 1]p p-dimensional hypercube. We then define the decision surface:

B1 : (x1 =
1
2

, x2, . . . , xp)

We consider a second dataset that is not linearly separable. Specifically, we define the second
dataset to have decision boundary given by:

B2 : (x1 =
1
2
+

1
10

sin(2πx2) sin(2πx3) . . . sin(2πxp), x2, . . . , xp)

To test our proposed algorithm, we draw N total points from the p dimensional hypercube.
First, we start our algorithm by computing the minimum of the SVM Lagrangian for the first
Ns data points with Ns � N. We require that Ns is commensurate with p or else there are flat
directions and our algorithm can become unstable. At each step, a new point is presented and
the invasion condition (18) is used to determine whether the set of support vectors is changed. If

9

J. Phys. A: Math. Theor. 53 (2020) 334001 O Howell et al

Figure 2. Test accuracy and number of support vectors as a function of time for the
linearly separable toy model, with true decision boundary B1 defined in the SI text
(https://stacks.iop.org/JPA/53/334001/mmedia). Left panel shows accuracy of online
SVM algorithm A(T) as a function of the number of points T that the online SVM has
seen. Black lines show individual realization, blue line shows mean accuracy. Dotted
blue line shows batch SVM accuracy. Right panel shows the number of support vectors
N(T) as a function of the number of points T. Black lines show individual realization,
blue line shows mean number of support vectors. Dotted blue line shows number of
support vectors in SVM trained on entire dataset at once. The dimension of the data
space is p = 100 and the online training is initialized with Ns = 30 data points.

(18) is satisfied, the steady state is recomputed using quadratic programming. This is continued
for all N points. We find an excellent agreement between the predictions of our online algorithm
and a batch SVM trained using all N points for both the linearly separable and non-linearly
separable datasets.

We study how the test accuracy and number of support vectors depend on the training epoch
T. For this purpose, let us define the accuracy

A(T) = 1 − 1
|Ntest|

∑
x∈Ntest

1
2
|tT(x) − tExact(x)|

where Ntest is the set of testing data and tExact(x) is the true label corresponding to point x. tT(x)
denotes the prediction of the online SVM trained with T data points. In addition, let us define

N(T) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Number of ai(T) > 0

for linearly seperable case

Number of C > ai(T) > 0

for non − linearly seperable case

where ai(T) are the support vector coefficients of the online SVM trained with T data points.
In both the linear and non-linear case N(T) counts the number of active support vectors.

Figures 2 and 3 show that in both the linear and non-linear case for large T the online
algorithm converges to an accuracy A(T) that is just below the accuracy of a batch SVM.
Furthermore the number of active support vectors that the the online method finds after training
is slightly below the number of support vectors that the batch SVM has.

Figure 4 shows the decision boundaries found by the EcoSVM were very similar to those
found using an ordinary batch SVM algorithm in the p = 2 case.

We also compare the time complexity of an EcoSVM with a standard SVM. The time
complexity of a quadratic programming problem of instance size N is O(N2). Thus, the time
complexity of an online SVM is O(

∑N
k=1 k2) = O(N3). An SVM in a p-dimensional space will

generically have p active support vectors. Ergo, the time complexity of EcoSVM is roughly

10

https://stacks.iop.org/JPA/53/334001/mmedia

J. Phys. A: Math. Theor. 53 (2020) 334001 O Howell et al

Figure 3. Same as figure 2, but for the non-linearly separable toy model, with true
decision boundary B2. The dimension is p = 30 and the initial number of points is
Ns = 30.

Figure 4. Comparison of classical SVM and EcoSVM algorithms for a data set with
N = 200 total training points points for (left) a linearly separable dataset and (right) a
dataset where the data is not linearly separable (see section for more detail on algorithm
in non-linear case). The true decision boundary is given by dashed black line. Cyan
regions show data that the batch SVM and online SVM both identify as ti = 1. Blue
regions show data that batch SVM and online SVM both identify as ti = −1. Purple
regions show area in which SVM and online SVM disagree. ti = 1 data points are shown
as green plus symbols, ti = −1 data points are shown as red circles. Active support
vectors are shown with larger symbols.

O(
∑N

k=1 p2) = O(N p2). Thus, the EcoSVM has a factor of O(N2

p2) speedup over a traditional
SVM. Figure 5 shows the CPU time as a function of the number of data points N for a
standard online batch SVM and an EcoSVM. The left panel of figure 6 shows the test accuracy
A(N). Note that the EcoSVM is O(N2) faster and that the accuracies of the traditional SVM
and EcoSVM are the same within about three percent. Furthermore, the left panel of figure 6
shows that EcoSVM and a traditional SVM find the same number of active support vectors.

7. Performance on MNIST

Next, we tested the performance of EcoSVM algorithm on MNIST [29, 30], a standard bench-
mark dataset in machine learning. The MNIST dataset consists of 6000 training images and
1000 test images of each of the handwritten digits ‘0’–‘9’. To test the EcoSVM, we considered
the binary classification task of distinguishing fours and nines. For this classification problem,
we used a standard Gaussian (RBF) kernel given by Kσ(x, y) = exp

[
− 1

2σ2 (x − y)2
]
, where

the kernel width σ was determined via cross validation on the batch SVM. The performance

11

J. Phys. A: Math. Theor. 53 (2020) 334001 O Howell et al

Figure 5. System CPU time as a function of the number of points N for a batch SVM
(red) and an EcoSVM (green). The black dotted lines are the theoretical scaling. The
dimension is p = 10. Error bars are shown. Each SVM is started with 10 data points.
Averaged over 100 realizations.

Figure 6. Left panel shows the test accuracy A(N) as a function of the number of points
N for a traditional SVM (red) and an EcoSVM (green). Right panel shows the number
of active support vectors ai such that C > ai > 0 as a function of the number of points
N for a traditional SVM (red) and an EcoSVM (green). The dimension is p = 10. Error
bars are shown. Each SVM is started with 10 data points. Error bars are shown. Averaged
over 100 realizations.

of our EcoSVM algorithm was comparable to a traditional SVM trained on the full dataset
(98.1% accuracy compared to 98.5% accuracy for traditional SVMs, as shown in figure 7). The
EcoSVM algorithm also ends up finding a similar number of support vectors as a traditional
SVM: ∼ 750. We note that since the MNIST dataset is not completely linearly separable in the
RBF feature space, in these numerical simulations we used the generalization of the EcoSVM
algorithm for non-linearly separable datasets.

8. Ecology to SVDD

Support vector data description (SVDD) is an unsupervised learning algorithm closely related
to SVMs that performs outlier detection (see figure 8 and [13, 14] for a good overview). The
SVDD problem consists in finding a sphere of minimum radius in some feature space that
contains all the data points. Points that lie on the surface of the sphere are called outliers and
are analogous to active support vectors in SVMs (see figure 8). We show below reinterpreting

12

J. Phys. A: Math. Theor. 53 (2020) 334001 O Howell et al

Figure 7. An ecologically inspired online SVM algorithm EcoSVM applied to digit
classification of nines and fours from the MNIST dataset [29, 30]. The right panel shows
the accuracy of EcoSVM for 25 different realizations. The average accuracy over all
realizations is shown using the solid blue line and the accuracy of an SVM trained on
the entire dataset is shown using the blue dotted line. The right panel shows the number
of active support vectors in each realization (black lines), the mean number of support
vectors across all realizations (blue solid line) and the number of support vectors for
SVM trained on full dataset (dotted blue line).

Figure 8. Schematic showing instances of a supervised classification problem (left) and
an outlier detection problem (right). In the supervised classification problem the goal is
to partition the space into two distinct volumes, one for each label. The thick black line
denotes the decision boundary. An incorrectly classified four (inside the red hexagon) is
shown on the wrong side of the decision boundary. In the outlier detection problem,
a sphere is created in the feature space to enclose the minimum volume while still
containing all data points (in this case fours). Points on the boundary of this sphere are
called outliers, they are starred in the schematic. The thick black line denotes the sphere
boundary.

SVDDs in terms of ecological dynamics naturally leads to an online SVDD learning algorithm
identical to the one found in Jiang et al in 2017 [15].

We can mathematically formulate the problem as follows. Given a set of unlabeled data
points D = (xi)N

i=1, find the sphere of minimum radius R that contains all the data points:

minimize R2

subject to |φ(xi) − μ|2 � R2 for all i
(21)

where the functionφ(x) defines the feature space andμ is the center of the sphere. This problem
is simplified by the introduction of KKT multipliers ai for each inequality constraint. The KKT

13

J. Phys. A: Math. Theor. 53 (2020) 334001 O Howell et al

conditions for the minimization problem are:

0 = ∇R,μL(R,μ, ai)

0 � ai

|φ(xi) − μ|2 − R2 � 0

ai[|φ(xi) − μ|2 − R2] = 0

(22)

with

L(R,μ, ai) = R2 +
N∑

i=1

ai(|φ(xi) − μ|2 − R2)

Minimizing L(R,μ, ai) with respect to μ and R gives equations:

N∑
i=1

ai = 1 and μ =
N∑

i=1

aiφ(xi) (23)

Substituting equation (23) into (22) gives maximization problem for the optimal ai:

argmaxai
L(ai) =

N∑
i=1

aiK(xi, xi) −
N∑

i, j=1

aiajK(xi, xj)

subject to 0 � ai for all i

and
N∑

i=1

ai = 1

(24)

L(ai) is called the dual SVDD Lagrangian and K(xi, x j) = φ(xi)Tφ(x j). For simplicity we
set K(xi, xi) = 1 for the diagonal elements in the rest of the derivation, although the results
we present are easily generalized for arbitrary kernel. Python code, which can be found at
https://github.com/owenhowell20/EcoSVM, works for any choice of K(x, y).

After the SVDD is trained, the sphere radius in feature space R can be determined via

R2 = maxi |φ(xi) − μ|2

= maxi (φ(xi) − μ)T(φ(xi) − μ)

= maxi (φ(xi)
Tφ(xi) − 2μTφ(xi) + μTμ) (25)

The explict dependence on φ(x) in (25) can be removed using μ =
∑N

i=1 aiφ(xi):

φ(xi)Tφ(xi) − 2μTφ(xi) + μTμ = 1 − 2
N∑

j=1

K(xi, xj)a j +

N∑
j,k=1

K(xj, xk)a jak

where we have used φ(xi)Tφ(x j) = K(xi, x j) and K(xi, xi) = 1. Thus, (25) can be written in
terms of kernel function and support vectors as

R2 = maxi

⎡
⎣1 − 2

N∑
j=1

K(xi, x j)a j +

N∑
j,k=1

K(x j, xk)a jak

⎤
⎦ (26)

14

https://github.com/owenhowell20/EcoSVM

J. Phys. A: Math. Theor. 53 (2020) 334001 O Howell et al

We apply our method to the SVDD Lagrangian (24). As K(xi, xi) = 1 and
∑N

i=1 ai = 1 the
first term in the sum can be ignored. A Lagrange multiplier λ is introduced to enforce the latter
constraint. The quantity to be maximized is then

argmaxai,λ L(ai,λ) = −
N∑

i, j=1

aia jK(xi, x j) + λ(
N∑

i=1

ai − 1)

subject to 0 � ai for all i

(27)

Using the quadratic programming-ecology duality, we can embed the solution to (24) as the
steady state of the dynamical equations

dai

dt
= ai(λ−

N∑
j=1

K(xi, x j)a j)

dλ
dt

= 1 −
N∑

i=1

an

(28)

Now, suppose we are at the steady state of equation (28) and consider the addition of a new
point x0. The invasion condition is that the initial growth rate is positive

0 <
1
a0

da0

dt
= λ−

N∑
j=1

K(x0, x j)a j (29)

Let xk be any point which has non-zero support vector, ak > 0. Then, solving the steady state
equation (28) for auxiliary variable λ gives

λ =

N∑
i=1

K(xi, xk)ai (30)

Inserting this into equation (29) gives the invasion condition

0 <
1
a0

da0

dt
=

N∑
i=1

ai[K(xk, xi) − K(x0, xi)] (31)

which is identical to equation (2.9) derived in [15] (note that they use notation z for our
variable x0). Equation (31) can be used to formulate an online learning algorithm in the
same manner as the EcoSVM algorithm presented in the main text. The paper by Jiang
et al derives equation (31) and calls the algorithm fast incremental support vector data
description (FISVDD). They also numerically show that this algorithm performs well on
real-world datasets. The fact that this algorithm can be constructed simply and elegantly using a
duality between quadratic programming and ecology suggests that there is a deeper connection
between machine learning and ecological dynamics than previously realized and, more signif-
icantly, that ecologically inspired machine learning models are not just of theoretical interest
but can be used for real world data analysis.

We illustrate the ability of FISVDD/EcoSVDD numerically. We draw data points from
a p-dimensional multinomial Gaussian distribution with identity covariance matrix and
mean uniformly sampled from the p-dimensional hypercube x ∈ [0, 1]p. Figure 9 shows the
two-dimensional case.

15

J. Phys. A: Math. Theor. 53 (2020) 334001 O Howell et al

Figure 9. Comparison of batch SVDD and online SVDD algorithms for a data set
with N = 100 total points (shown in black) drawn from a Gaussian distribution.
Batch SVDD active support vectors are shown with red ‘+’ symbols. EcoSVDD
active support vectors are shown with green stars. The kernel function is Gaussian
K(x, y) = exp(−1

2 (x − y)T(x − y)). The EcoSVDD algorithm was started with 10 points.

Figure 10. Online SVDD radius and kernel sphere center similarity score as function of
T. Left panel shows online SVDD radius R(T) as a function of the number of points T that
the online SVM has seen. Black lines show individual realization, blue line shows mean
radius. Dotted blue line shows batch SVDD radius. Right panel shows the normalized dot
product between μ(T) and μ̃. Black lines show individual realizations, blue line shows
average over realizations. The dimension of the data space is p = 15 and the online
training is initialized with Ns = 30 data points.

We define R(T) to be the SVDD radius (26) of an FISVDD/EcoSVDD trained on T points.
The left panel of figure 9 shows R(T) as a function of T. R(T) converges to the batch SVDD
radius (shown with a dashed blue line).

Similarly, we define a fidelity metric between the FISVDD/EcoSVDD kernel sphere center
trained on T points μ(T) (23) and the batch SVDD sphere center μ̃ as

S(T) =
μ(T)Tμ̃√

μ(T)Tμ(T)
√
μ̃Tμ̃

(32)

16

J. Phys. A: Math. Theor. 53 (2020) 334001 O Howell et al

S(T) � 1 with equality if and only if μ(T) = μ̃. The right panel of figure 10 shows S(T) as
a function of T. S(T) converges to 1 illustrating the fact that the FISVDD/EcoSVDD and batch
SVDD produce the same kernel sphere center and radius.

9. Conclusion

In this work, we have shown how we can think about kernel methods using ideas from
ecology. This ecological mapping allowed us to formulate a new ecologically inspired online
SVM algorithm, the EcoSVM. We have shown that the performance of EcoSVM is compa-
rable to traditional SVMs that work with all data simultaneously. Our algorithm differs from
all previous online SVMs which we know of which must recompute the support vectors at
each learning step [22–27]. As a result, our algorithm performs significantly faster for large
datasets. For a dataset with N data points, our algorithm is typically faster by a factor of N2. We
also show that the equivalent online algorithm for outlier detection using SVDD is equivalent
to the fast incremental SVDD algorithm found by [15].

Our results suggest that ecological dynamics may provide a rich new setting for thinking
about biologically-inspired machine learning. The fact that algorithms with significant speed-
up and much smaller memory requirements can be constructed simply and elegantly using a
duality between quadratic programming and ecology suggests that there is a deeper connection
between machine learning and ecological dynamics than previously realized. It also suggests
that ecologically inspired machine learning models are not just of theoretical interest but may
be useful for real world data analysis.

Another promising research direction is the idea is to explore how we can implement
complicated statistical learning tasks using real ecosystems. Our work suggests the tantalizing
possibility that it maybe possible to engineer synthetic ecosystems that implement sophisti-
cated statistical learning algorithms [31]. In particular, it will be interesting to ask if and how we
can harness synthetic biology and CRISPR-based biological techniques to implement kernel
methods.

Code implementing the EcoSVM and EcoSVDD algorithms can be found at
https://github.com/owenhowell20/EcoSVM.

Acknowledgments

OH acknowledges support from BU UROP student funding. The work was supported by NIH
NIGMS Grant 1R35GM119461, Simons Investigator in the Mathematical Modeling of Living
Systems (MMLS) to PM.

ORCID iDs

Owen Howell https://orcid.org/0000-0002-5445-7810

References

[1] Bishop C M 2006 Pattern Recognition and Machine Learning (Berlin: Springer)
[2] Mehta P, Bukov M, Wang C-H, Day A G, Richardson C, Fisher C K and Schwab D J 2019 Physics

Reports (Amsterdam: Elsevier)
[3] Cortes C and Vapnik V 1995 Mach. Learn. 20 273

17

https://github.com/owenhowell20/EcoSVM
https://orcid.org/0000-0002-5445-7810
https://orcid.org/0000-0002-5445-7810
https://orcid.org/0000-0002-5445-7810
https://doi.org/10.1007/bf00994018
https://doi.org/10.1007/bf00994018

J. Phys. A: Math. Theor. 53 (2020) 334001 O Howell et al

[4] Schölkopf B, Smola A J, Bach F et al 2002 Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond (Cambridge, MA: MIT Press)

[5] Vapnik V 2013 The Nature of Statistical Learning Theory (Berlin: Springer)
[6] MacArthur R 1970 Theor. Popul. Biol. 1 1
[7] Chesson P 1990 Theor. Popul. Biol. 37 1
[8] Mehta P, Cui W, Wang C-H and Marsland R 2019 Phys. Rev. E 99 052111
[9] MacArthur R and Levins R 1967 Am. Nat. 101 3949

[10] Advani M, Bunin G and Mehta P 2017 arXiv:1707.03957
[11] MacArthur R and Levins R 1967 Am. Nat. 101 377
[12] Colwell R K and Futuyma D J 1971 Ecology 52 567
[13] Schölkopf B, Williamson R, Smola A, Shawe-Taylor J and Platt J 1999 Proc. 12th Int. Conf. on

Neural Information Processing Systems, NIPS’99 (Cambridge, MA: MIT Press) 582–8
[14] Tax D M J and Duin R P W 2004 Mach. Learn. 54 45
[15] Jiang H, Wang H, Hu W, Kakde D and Chaudhuri A 2019 Proc. AAAI Conf. Artif. Intell. 33 3991–8
[16] Boyd S and Vandernberghe L 2004 Convex Optimization (Cambridge: Cambridge University Press)
[17] Bishop C M 2011 Pattern Recognition and Machine Learning (Berlin: Springer)
[18] Valdovinos F, Moisset de Espanés P, Flores J and Ramos-Jiliberto R 2012 Oikos 122 907–17
[19] Tilman D 1982 Resource Competition and Community Structure vol 17 (Princeton, N J: Princeton

University Press)
[20] Shea K and Chesson P 2002 Trends Ecol. Evol. 17 170
[21] Case T J 1990 Proc. Natl Acad. Sci. 87 9610
[22] Poggio T and Cauwenbergus G 2000 Advances in Neural Information Processing Systems (Cam-

bridge, MA: MIT Press)
[23] Karampatziakis N and Langford J 2011 arXiv:1011.1576
[24] Laskov P, Gehl C, Krüger S and Müller K-R 2006 J. Mach. Learn. Res. 7 1909
[25] Tax D M and Laskov P 2003 Neural Networks for Signal Processing NNSP’03 2003 IEEE 13th

Workshop on (IEEE, 2003) 499–508
[26] Ruff L, Vandermeulen R, Goernitz N, Deecke L, Siddiqui S A, Binder A, Müller E and Kloft M

2018 Proc. 35th Int. Conf. on Machine Learning Proc. of Machine Learning Research (PMLR)
vol 80 ed J Dy and A Krause (Stockholm: Stockholmsmässan) 4393–402

[27] Sohrab F, Raitoharju J, Gabbouj M and Iosifidis A 2018 arXiv:1802.03989
[28] Valdovinos F, Berlow E, Espanes P M d, Ramos-Jiliberto R, Vazquez D P and Martinez N D 2018

Nat. Phys. 9 424
[29] Lecun Y 1998 The MNIST database http://yann.lecun.com/exdb/mnist/
[30] Lecun Y, Bottou L, Bengio Y and Haffner P 1998 Proc. IEEE 2278–324
[31] Zomorrodi A R and Segre D 2016 J. Mol. Biol. 428 837

18

https://doi.org/10.1016/0040-5809(70)90039-0
https://doi.org/10.1016/0040-5809(70)90039-0
https://doi.org/10.1016/0040-5809(90)90025-q
https://doi.org/10.1016/0040-5809(90)90025-q
https://doi.org/10.1103/physreve.99.052111
https://doi.org/10.1103/physreve.99.052111
https://doi.org/10.1086/282505
https://doi.org/10.1086/282505
https://arxiv.org/abs/1707.03957
https://doi.org/10.1086/282505
https://doi.org/10.1086/282505
https://doi.org/10.2307/1934144
https://doi.org/10.2307/1934144
https://doi.org/10.1023/b:mach.0000008084.60811.49
https://doi.org/10.1023/b:mach.0000008084.60811.49
https://doi.org/10.1609/aaai.v33i01.33013991
https://doi.org/10.1609/aaai.v33i01.33013991
https://doi.org/10.1609/aaai.v33i01.33013991
https://doi.org/10.1609/aaai.v33i01.33013991
https://doi.org/10.1111/j.1600-0706.2012.20830.x
https://doi.org/10.1111/j.1600-0706.2012.20830.x
https://doi.org/10.1111/j.1600-0706.2012.20830.x
https://doi.org/10.1111/j.1600-0706.2012.20830.x
https://doi.org/10.1016/s0169-5347(02)02495-3
https://doi.org/10.1016/s0169-5347(02)02495-3
https://doi.org/10.1073/pnas.87.24.9610
https://doi.org/10.1073/pnas.87.24.9610
https://arxiv.org/abs/1011.1576
https://arxiv.org/abs/1802.03989
https://doi.org/10.1038/s41467-018-04593-y
https://doi.org/10.1038/s41467-018-04593-y
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1016/j.jmb.2015.10.019
https://doi.org/10.1016/j.jmb.2015.10.019

	Machine learning as ecology
	1. Introduction
	2. SVMs as QP
	3. The ecology of SVMs
	4. EcoSVM: An online SVM algorithm
	5. Adding the slack
	6. Performance on toy models
	7. Performance on MNIST
	8. Ecology to SVDD
	9. Conclusion
	Acknowledgments
	ORCID iDs
	References

