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Cannot see the random forest for the decision trees:
selecting predictive models for restoration ecology
David M. Barnard1 , Matthew J. Germino1,2 , David S. Pilliod1 , Robert S. Arkle1 ,
Cara Applestein1, Bill E. Davidson1, Matthew R. Fisk1

Improving predictions of restoration outcomes is increasingly important to resource managers for accountability and adaptive
management, yet there is limited guidance for selecting a predictive model from the multitude available. The goal of this article
was to identify an optimal predictive framework for restoration ecology using 11 modeling frameworks (including machine
learning, inferential, and ensemble approaches) and three data groups (field data, geographic data [GIS], and a combination
thereof). We test this approach with a dataset from a large postfire sagebrush reestablishment project in the Great Basin,
U.S.A. Predictive power varied among models and data groups, ranging from 58% to 79% accuracy. Finer-scale field data
generally had the greatest predictive power, although GIS data were present in the best models overall. An ensemble prediction
computed from the 10 models parameterized to field data was well above average for accuracy but was outperformed by others
that prioritized model parsimony by selecting predictor variables based on rankings of their importance among all candidate
models. The variation in predictive power among a suite of modeling frameworks underscores the importance of a model
comparison and refinement approach that evaluates multiple models and data groups, and selects variables based on their
contribution to predictive power. The enhanced understanding of factors influencing restoration outcomes accomplished by
this framework has the potential to aid the adaptive management process for improving future restoration outcomes.
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Implications for Practice

• The framework presented herein will assist practitioners
in selecting and comparing among the numerous models
available for predicting restoration treatment outcomes.

• The variability we found among models, and the ability to
refine accuracy through repeated testing, implies that mul-
timodel comparisons are the best approach to optimizing
predictive accuracy for restoration ecology projects.

• Optimizing predictive power for restoration ecology mod-
els will aid resource managers to locate treatments in areas
with the greatest chance of success, thereby maximizing
efficiency and resources.

Introduction

Prediction, as a means of demonstrating scientific understand-
ing, has long been heralded as the ultimate goal of ecology
(Peters 1991; Brudvig 2011; Houlahan et al. 2017). However,
accurate predictions have proven troublesome due to the inher-
ent complexity of ecological systems and the volume of data
needed to adequately represent pattern–process relationships
(Brudvig et al. 2017; Houlahan et al. 2017; Applestein et al.
2018). Computationally rigorous models (e.g. machine learning
algorithms [MLAs]) excel at extracting patterns from complex
datasets and are becoming more common in ecological stud-
ies (Peters et al. 2014), but the number of MLAs germane to

any specific research problem outpace the guidance available
for selecting from, testing, and refining candidate models. There
is hence a need to clarify the model selection process, espe-
cially in relation to restoration ecology projects where develop-
ing restoration strategies, evaluating restoration outcomes, and
applying adaptive management principles can be confounded by
intricacies in the data such as idiosyncratic outcomes and envi-
ronmental variability.

Developing predictive models typically involves an uncon-
strained search of the dataset for patterns that explain variation
in the dependent variable. The traditional inferential approach to
hypothesis testing has focused on using central tendencies and
linear relationships in the data to assess meaningful patterns.
However, ecological data are often complex and characterized
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Selecting predictive models for restoration ecology

Figure 1. Conceptual diagram of the model comparison framework used in this study. Gray boxes indicate modeling processes, orange boxes indicate data
inputs, blue boxes indicate knowledge outputs, and green boxes indicate developed models or predictions. Note that class imbalance assessments are only
required on classification models, not regression models.

by latent patterns, nonlinear relationships, and higher-order
interactions that can be more difficult to identify using inferen-
tial approaches compared to MLAs (Cutler et al. 2007; Olden
et al. 2008). Notwithstanding, differences in mathematical for-
mulation among MLAs can lead to inconsistent model perfor-
mance given a specific dataset (Olden et al. 2008; Kampichler
et al. 2010; Witten et al. 2016), suggesting that comparisons are
needed to select the model with the greatest predictive accuracy.
Alternatively, model ensembles can be developed to “smooth
out” predictions from multiple models (Buisson et al. 2010;
Elith et al. 2011), but this approach is rarely compared to indi-
vidual models that have been refined and thus ensemble model
benefits are typically assumed rather than tested.

The most objective assessment of predictive power is to test
a model on validation data independent of those used for model
parameterization, but such tests are rarely reported (Houlahan
et al. 2017). Instead, it is more common to estimate predictive
accuracy by cross-validating a model on random subsamples
of the parameterization dataset (Arlot & Celisse 2010). This
manner of out-of-sample testing lacks independence given the
potential for inadvertent information transfer between training

and testing data subsets (so-called “data-leakage”; Witten et al.
2016), and thus previously reported accuracies may be overly
optimistic.

Predictive model development tends to be less limited by
the often-philosophical constraints placed on inferential mod-
els built for hypothesis testing (Houlahan et al. 2017). Thus,
more accurate models may be developed by using all poten-
tial predictor variables and an iterative approach of repeated
model testing, reduction, and refinement based on relative rank-
ings of variable importance. Hence, the goal of this study was
to find the most predictive model of restoration outcomes using
an iterative model comparison approach including MLAs, infer-
ential tests, and model-ensemble predictions (Fig. 1, Table 1,
Appendix S1, Supporting Information). We used three groups of
predictor data (Table 2): (1) high sampling intensity plot-level
data collected by technicians (Field-Data), (2) spatially repre-
sentative and remotely sensed or interpolated geographic and
landscape data that are readily available (GIS-Data), and (3)
a combination thereof (All-Data) to establish a maximum pre-
dictive accuracy. We then tested this framework using a case
study of postfire sagebrush occupancy following aerial seeding
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Table 1. Modeling frameworks including R packages training parameters used.

Algorithm
Abbreviation Algorithm Description R Package and Reference

Training
Parameters

Training Parameter
Description

CART Classification and regression tree “rpart” (Therneau et al. 2010) cp Complexity parameter
Boosted CART Boosted classification and

regression tree
“ada” (Culp et al. 2006) Iter Number of trees to grow

Maxdepth Maximum tree depth
nu Learning rate

Random forest Random forest “randomForest” (Breiman
et al. 2011)

mtry Number of predictors to
randomly select for each
tree

SVM Support vector machine “ada” (Culp et al. 2006) degree Polynomial degree
Scale Scale
c Cost

ANN Artificial neural network “nnet” (Ripley 2013) Size Number of hidden units
Decay Weight decay
bag Bagging iterations

Boosted logistic Boosted logistic regression “caTools” (Tuszynski 2012) nIter Number of boosting iterations
GLM Generalized linear logistic

regression with least absolute
shrinkage and selection
operator (LASSO)

“glmnet” (Friedman et al.
2016)

alpha Mixing percentage

lambda Regularization parameter
Bayesian GLM Bayesian generalized linear

model
“arm” (Gelman et al. 2009) –

Naïve Bayes Naïve Bayes classifier “e1071” (Dimitriadou et al.
2009)

fL Laplace correction

Usekernal Distribution type
Adjust Bandwidth adjustment

k-NN k-nearest neighbor “kknn” (Schliep et al. 2010) Kmax Maximum number of
neighbors

Distance Distance
Kernal Kernal

treatments in the Great Basin, U.S.A. We selected sagebrush
occupancy, a coarse metric for applied ecological outcomes, as
our response variable due to the functional importance of sage-
brush in the study ecosystem and on the premise that occupancy
may be more predictable than other recovery metrics such as
canopy cover or relative abundance (Brudvig et al. 2017; Laugh-
lin et al. 2017). In the process of building our predictive models,
we also explore variable importance rankings, model predictive
ability on data independent from that used for model develop-
ment, and agreement in model predictions along gradients in key
landscape characteristics to improve the ecological understand-
ing of our study system.

Methods

Site Description and Data Collection

Observations of sagebrush occupancy, vegetation, and soil sur-
face characteristics (i.e. Field-Data) were collected at 2,171
plots in the year following the 2015 Soda fire, which burned over
113,000 ha in southwestern Idaho and southeastern Oregon (Fig.
S1). During the winter and spring of 2016, >75,000 ha of the
burn area were treated with three different applications of aerial
sagebrush seed ranging from 0.89 to 1.97 lb per ha of pure

live seed (PLS). Sagebrush seed mixes included Wyoming big
sagebrush (Artemesia tridentata ssp. wyomingensis), basin big
sagebrush (Artemesia tridentata ssp. tridentata), and low sage-
brush (Artemesia arbuscula). In addition, 11,122 ha were also
treated with a preemergent herbicide (Imazapic; applied to con-
trol annual grasses and some broad leaf weeds) and another
7,241 ha were drill-seeded with perennial bunchgrass seed
mixes which included primarily blue bunch wheatgrass (Pseu-
doroegneria spicata), crested wheatgrass (Agropyron crista-
tum), and Sandberg’s bluegrass (Poa secunda). The polygons
for each treatment overlapped in some regions, and thus indi-
vidual sampling points may have had any combination of the
three treatments applied.

The 2,171 plots used in this study are from two indepen-
dent datasets: one collected under a Bureau of Land Manage-
ment Emergency Stabilization and Rehabilitation (BLM-ESR)
project and the second collected using similar methods for a
Joint Fire Sciences Program (JFSP) project. Plot locations for
the BLM-ESR project were selected using a stratified-random
approach but were discarded if slope angle was >40∘, they were
within 400 m of a water source, or if cobbles, rocks, or trails
made up >20% of an area within an 18 m radius of the plot
center. Plots in the JFSP study were selected at defined dis-
tances from a road (100, 200, and 300 m). To improve detection
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Table 2. Potential predictor variables used for modeling. In the treatment predictors (i.e. top three rows), a zero indicates the treatment was not applied and a
one indicates the treatment was applied. A Y (yes) or N (no) in the data group columns identifies whether the data represent field measurements (Field-Data)
or if they were collected from spatial geographic data (GIS), readily available online. The All-Data subset used in this study included all variables.

Data Group

Parameter Data Class Data Range Source Field GIS

Sagebrush seed applied Categorical 0–1 BLM polygons Y Y
Herbicide applied Categorical 0–1 BLM polygons Y Y
Grass seed applied Categorical 0–1 BLM polygons Y Y
Exotic annual grass cover (%) Numerical 0–100 Measured in field Y N
Perennial bunch grass cover (%) Numerical 0–100 Measured in field Y N
Fertile island cover (%) Numerical 0–100 Measured in field Y N
Pedoderm class Categorical – Measured in field Y N
Mean annual precipitation (mm) Numerical 234–530 PRISM N Y
Plot slope aspect (degrees) Numerical 0.1–360 Digital elevation model N Y
Plot slope angle (degrees) Numerical 0.2–37.8 Digital elevation model N Y
Heatload (unitless) Numerical 0.35–0.99 Digital elevation model N Y
Topographic wetness index Numerical 5.13–17.31 Digital elevation model N Y
Site potential Categorical – LANDFIRE N Y
LANDFIRE vegetation cover Categorical – LANDFIRE N Y
Burn history (no. fires) Numerical 0–2 LANDFIRE N Y
Soil taxonomic class Categorical – SSURGO N Y
Soil erodibility (unitless) Numerical 0–0.44 SSURGO N Y
Depth to bedrock (cm) Numerical 0–99 SSURGO N Y

probability, sagebrush occupancy was determined by surveying
circular areas of increasing radius (5.5, 9, 13, and 18 m) from
the plot center-point. If no sagebrush were observed within an
18 m radius, the plot was recorded as unoccupied.

All data used for modeling are summarized in Table 1, and
data summaries are presented in Table S1 and Figure S2. For
Field-Data, we conducted an unguided ocular assessment of
exotic annual grass, perennial bunch grass, and soil fertile island
cover, and recorded the soil “pedoderm” classification of each
plot. Fertile islands of soil are “legacy” imprints of prefire shrub
crowns that have enhanced biogeochemical and hydrologic soil
properties which persist after a fire (Hoover & Germino 2012).
They are visually identified by substantially darker surface
color. Soil pedoderm classification is based on the biological
and physical features at the soil surface (Burkett et al. 2011).

For GIS-Data we used a digital elevation map to determine
slope angle and aspect at each plot location. These param-
eters were then used to calculate heatload (McCune et al.
2002) and topographic wetness index (TWI; Beven & Kirkby
1979). A 30-year mean of annual precipitation was determined
from gridded PRISM data (800 m pixels; PRISM Climate,
PRISM-Climate-Group 2004). We collected prefire vegetation
classification and ecological site potential from the LANDFIRE
database (Rollins 2009) and we collected spatial soil mapping
data from the soil geographic database (SSURGO; Soil Survey
Staff 2017).

Supplementing field observations with spatial or remotely
sensed data (i.e. GIS-Data in this study) is a standard practice
in ecological studies, but there is potential for error and mis-
classification to be introduced when GIS data are disseminated
at the plot level (Dietze 2017), and little is known about the
trade-offs between the increased information of including GIS
at the cost of reduced resolution, especially in the context of

multimodel comparisons. While practitioners rarely rely solely
on GIS-Data, in lieu of field sampling, the spatial intensity are
often limited by budgetary constraints, and it is not always clear
if landscape gradients are characterized with adequate resolu-
tion (Applestein et al. 2018).

Model Comparison Framework

Data Preparation and Preprocessing

Data were preprocessed by filtering out missing values and pre-
dictors with zero or near-zero variance. To determine near-zero
variance predictors, we used two metrics from Kuhn (2008):
(1) percent of unique values, defined as the number of unique
values divided by the total number of samples and (2) the fre-
quency ratio, defined as the frequency of the most prevalent
value over the second most frequent value. If the percent of
unique values was <10% and the frequency ratio was >19, then
that predictor was removed (Kuhn & Johnson 2013). Correla-
tions among predictors were calculated and predictors were to
be removed if the pair-wise Pearson’s correlation coefficient (r)
was>0.75 (Kuhn & Johnson 2013), although no colinear predic-
tors were observed. Data were then standardized and centered
to have a mean of zero and variance equal to one. Training data
(BLM-ESR) and testing data (JFSP) were preprocessed sepa-
rately to avoid data leakage (Witten et al. 2016). All modeling
and model evaluations were done using the “caret” package in
R (Kuhn 2008).

Parameterize and Tune Initial Models

We calibrated 30 models (10 models each for the Field-Data,
GIS-Data, and All-Data groups) using 10-fold cross-validation
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repeated three times on different random subsets of the
calibration dataset. A list of the different models and their
estimated parameters are listed in Table 2, and a full description
of each model can be found in Appendix S1. A model-averaged
ensemble prediction was then determined for each of the three
data groups by determining the mode of predictions from the
10 parameterized models at each plot in the calibration dataset.
The code for calibrating and testing model performance are
available via Appendix S2.

Assess Model Performance Rankings and Identify Key Models
and Data Groups

We ranked the individual models’ predictive power by validat-
ing each of the 30 models, and the three model-averaged ensem-
ble predictions, on the independent JFSP test dataset (Fig. 2).
We used Cohen’s kappa (henceforth “kappa”) and balanced
accuracy as model performance metrics because both are inte-
grative measures that consider multiple dimensions of model
performance instead of just the number of correct classifica-
tions (i.e. accuracy). Balanced accuracy is calculated as the
mean of sensitivity (true positive rate) and specificity (true false
rate) (Kuhn 2008). We note that balanced accuracy is a “penal-
ized” metric; typically resulting in lower values of accuracy
than those produced by the standard accuracy calculation, which
only reports the total number of correct predictions. Kappa
accounts for chance effects and reports a measure of the pro-
portion of all possible classifiers that are predicted accurately
(Cohen 1960).

To reduce the total number of models subjected to in-depth
evaluation and to limit processing time, we identified two groups
of “top” models. Models placed in the first group retained their
framework and data-group identities (henceforth the “frame-
work × data group” group) and were in the top 20% of models
based on their distance from the y-intercept along the kappa
and balanced accuracy regression line. This assumes a higher
combined kappa and balanced accuracy score indicates a bet-
ter model. The second group contained the three best model
frameworks overall, regardless of data group, based on their
combined kappa and balanced accuracy scores (henceforth the
“best framework” group).

Variable Importance, Class Imbalance, and Final Model
Selection

We ranked variable importance by permuting a mean decrease
in classification accuracy per variable during the repeated
10-fold cross-validation procedure used for model parameter-
ization. Variable importance was assessed using the All-Data
group from the initial model runs to avoid confounding results
across the different groups of predictor variables.

Imbalanced classes (i.e. a greater number of “presences” ver-
sus “absences” or vice versa) can affect model parameterization
and accuracy and should be considered during model develop-
ment (Kotsiantis et al. 2007; Kampichler et al. 2010). In this
study, sagebrush occupancy classes were indeed imbalanced,
with only 37% of plots occupied. Consequently, we randomly

subset the framework × data group to produce five new calibra-
tion datasets, each with 0.5 sagebrush occupancy rate, to assess
class imbalance effects on predictive accuracy. We compared
model results derived from these datasets to those obtained
from five other random subsets that retained the imbalanced
classes.

To test the influence of variable reduction on the fit of
models in the best framework group, we built a base model for
each of the candidate models that included only the predictor
with the highest importance (mean annual precipitation, i.e. a
univariate model). Variables were added one at a time according
to their relative importance ranking, models were compared, and
the best performing model was selected based on kappa and
balanced accuracy.

Results

Metrics of model performance varied substantially across mod-
eling frameworks and data groups (Fig. 2). Balanced accu-
racy ranged from 0.59 for the least predictive model (CART
All-Data) up to 0.74 for the most predictive model (random
forest with Field-Data) and 0.75 for the model-averaged ensem-
ble prediction from Field-Data. Kappa ranged from 0.14 for
GIS CART, to 0.44 for boosted logistic regression parameter-
ized to All-Data, and up to 0.49 for the ensemble prediction
to Field-Data. The frequency-density distributions for balanced
accuracy and kappa were similar among data groups, with
GIS-Data being more skewed away from lower values than the
All-Data group, and the Field-Data distribution was dominated
by higher values (Fig. 2, upper panels).

Field-Data had the highest mean balanced accuracy (0.69),
GIS-Data the lowest (0.64), and the All-Data group had a mean
accuracy of 0.67. Kappa was greatest for the Field-Data subset
of models (0.35), less for models parameterized with All-Data
(0.31), and least for models parameterized with GIS-Data
(0.25). Averaged across All-Data groups, random forest,
boosted CART, and SVM were the highest performing indi-
vidual models (Fig. 2, lower panels), and the model-averaged
ensemble was the fourth most predictive framework. Arrang-
ing the “framework × data groups” based on their balanced
accuracy and kappa scores along a regression line showed a
relative ranking of overall “best” model performance (Fig. 3).
The top performing 20% of models are identified within
the circle.

Predictive accuracy was overestimated by up to 23% (aver-
age of 16.6% across all models and data groups) if assessed only
on within-sample subsets of data (i.e. 10-fold cross-validation)
versus validation on the independent dataset (Fig. 4). Overes-
timated accuracy was greatest in the GIS-Data and All-Data
groups (19% and 18.4%, respectively) versus the Field-Data
group (3.7%). The range of overestimations was spread evenly
among models, with SVM, random forest, and CART models
having the greatest overestimates, and Boosted logistic, naïve
Bayes, and Bayesian generalized linear models (GLMs) having
the least.

The rank of variable importance was consistent across
models (Fig. 5A). Variation in relative variable importance
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Figure 2. Comparison of model metrics (balanced accuracy and kappa, left and right columns, respectively, for predicting sagebrush occupancy) across
modeling frameworks and data groups. Upper panels represent the predictive performance of individual model, ensembles, and data group parameterizations.
Middle panels are a probability density function showing the distribution of balanced accuracy and kappa for the three data groups averaged across all
modeling frameworks. The lower two panels show the mean balanced accuracy and kappa among data groups for the 10 modeling frameworks tested in this
study. The x-axis on the lowest panel is applicable to the middle and upper panels as well Dashed line in upper-right panel represents a 0.4 threshold for kappa.

in the All-Data subset was small except for the five mul-
tilevel categorical predictors (burn history, LANDFIRE
existing vegetation cover, soil taxonomic class, LANDFIRE
site potential, and pedoderm class) due to variable effects
among factor levels. Mean scaled variable importance of the
three best All-Data models (i.e. random forest, SVM, and
boosted CART; represented by smaller dark blue circles) were

within the variable importance error range determined from
all models.

Reduced predictive performance due to model overfitting
from unconstrained variable selection was apparent in the
candidate models (Fig. 5B). We found that predictive power
increased, as up to six predictor variables were added, but accu-
racy generally decreased when more than six predictors were
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Figure 3. Validation balanced accuracy versus kappa for the 10 models
(black/white symbols) of sagebrush occupancy tested, and the ensemble
averages and three data groups (color symbols). Balanced accuracy is the
mean of sensitivity and specificity whereas kappa accounts for chance
effects and reports a measure of the proportion of all possible classifiers
that are predicted accurately. The black line represents a least squares
regression line. The models and data groups inside of the black circle are
the top models in the model × data subgroup.

included. Boosted CART, SVM, and random forest models had
the highest balanced accuracy and kappa (0.79 and 0.54, respec-
tively for all models) when parameterized with just three pre-
dictor variables: mean annual precipitation, sagebrush seeding
treatment, and fertile island cover. Hence, we concluded that
these three models were the best and final models. We found
no significant effect of class imbalance on predictive accuracy,
sensitivity, and specificity by randomly down-sampling the
majority class and comparing it to down-sampled calibration
sets (for equal sample sizes) that retained class imbalance
(p> 0.15 for all comparisons).

The predictability of sagebrush occupancy, in terms of the
10 different models agreeing on predictions of presence or
absence, varied across gradients in key landscape characteris-
tics (Fig. 6). This was determined by calculating a mean value
of the numeric prediction (0,1) from the 30 tested models (i.e. a
value of 0 indicates that all models agree on sagebrush absence,
and a value of one indicates all models agree on sagebrush
presence) and regressing those values against key landscape
characteristics. All model predictions agreed that sagebrush
would not be present at 33% of plots in the independent test-
ing dataset, whereas all model predictions agreed that sagebrush
would be present at only 1% of the plots. Mean annual pre-
cipitation, exotic annual grass cover, and fertile island cover
all significantly influenced model agreement (p< 0.001 for all).
Agreement among model predictions of no seedling presence
(i.e. complete restoration seeding failure) was more likely to
occur at lower mean annual precipitation, higher exotic annual
grass cover, and low fertile island cover. Conversely, high mean
annual precipitation, low exotic annual grass, and high interme-
diate to high fertile island cover were more likely to result in
models that agreed on sagebrush presence (i.e. some restoration
seeding success).

Figure 4. Overestimate of predictive accuracy when models are tested
only on out-of-sample subsets (i.e. cross-validation) versus when tested on
independent data for the three data groups (A), and the 10 tested models
and ensemble prediction (B).

Discussion

Variability Among Modeling Frameworks and Predictor Groups

Our goal was to introduce a model comparison and refinement
approach to optimize model predictive ability to help guide
the field of restoration ecology as mathematical and statistical
modeling are rapidly adopted into this discipline. We illustrated
this approach with a case study of postfire sagebrush rehabilita-
tion treatments across a large, heterogeneous area where issues
of environmental variability and scale capture the ecological
complexity typical of restoration projects and complicate under-
standing of restoration outcomes. The generalized nature of this
framework can be readily adapted to other systems and study
designs based on investigator goals and dataset characteristics
and thus in this section we explore our findings in a more gener-
alized context. In this regard, we note that many of the models
can predict continuous outcomes in addition to the binary cat-
egorical outcomes examined in this study (e.g. boosted CART,
random forest, artificial neural networks (ANN)). In the process
of testing and down-sampling multiple models, we found the
predictive accuracy of our models to vary substantially, and the
best models to be those with the fewest variables. These results
underscore the importance of prioritizing model simplicity even
with models that are otherwise understood to handle a large
number of predictors well (i.e. MLAs; discussed below).
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Figure 5. Mean and standard deviation of relative variable importance for predicting sagebrush occupancy across all models in Figure 1 (A; large blue
circles) and the mean importance of each variable in the two best individual models (random forest and boosted CART; smaller dark blue circles), and (B) the
change in the mean of balanced accuracy among models as parameters were added sequentially to the models in order of their scaled variable importance.

Figure 6. Mean of the numerical model predictions of sagebrush occupancy (0 for absence, 1 for presence) at the test data plots as a function of mean annual
precipitation (A), exotic annual grass cover (B), and (C) fertile island cover. A mean of binary prediction of 0 indicates all models agree on sagebrush
absence, and a model agreement of 1 indicates all models agree on presence. Values between 0 and 1 are equal to the number of models predicting presence
divided by the number of models predicting absence.

Studies that tested the predictive power of different data
groups are lacking in the literature. However, we found models
parameterized using only Field-Data generally had the high-
est accuracy, although GIS-Data predictor variables also con-
tributed information to the best models. Despite these results
being specific to our system, the variation among data groups
has interesting implications for practitioners looking to max-
imize predictive power across a range of spatial scales and
in different ecosystems. For example, the coarse resolution of
GIS-Data may be sufficient (or potentially superior) for research

projects focused at eco-regional scales where coarser climate
and edaphic variation may overwhelm microscale effects. How-
ever, for practitioners working at smaller scales, in individ-
ual projects, or in heterogeneous landscapes like this study,
using field measurements as predictor variables was clearly
important for maximizing predictive accuracy. Similarly, some
models performed better with coarser GIS-Data than Field-Data
(Boosted CART, k-NN), or similarly to those with Field-Data
(random forest) and may make ideal candidates for future stud-
ies with limited resources to invest into field sampling.
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We observed substantial variation in predictive power among
models and data groups that we attribute to differences in the
mathematical formulation. These differences, such as how vari-
ables are selected or a tendency to overfit models, can affect
model accuracy. While an assessment of the intricate differences
among models and how they may affect predictive accuracy is
beyond the scope of this article, for further information we direct
the reader to Appendix S1, seminal publications on MLAs and
model comparisons (e.g. De’ath & Fabricius 2000; Kotsiantis
et al. 2007; Kampichler et al. 2010), and the documentation
for the “caret” package (http://topepo.github.io/caret/index.ht).
Nonetheless, we found CART to be the least predictive model
overall which is contrary to Germino et al. (2018), an infer-
ential study using this dataset, that reported 71% predictive
accuracy for CART in predicting sagebrush reestablishment
(versus 59–66% in this study). There are two potential reasons
for this disparity; first, in the current study, the parameter used
to “prune” initial decision trees and reduce model overfitting
was randomly selected from a range of potential values, whereas
the previous study used a mathematical approach by finding the
parameter value with the greatest cross-validated accuracy. Sec-
ond, the previous study used a subset of predictors that had
previously been identified as significant in a linear model to
parameterize the CART model, whereas in this study we did
not assign any variable importance during initial CART param-
eterization and assessment. Variable importance can be assigned
using most CART model algorithms, and may be essential given
the “greedy” approach to partitioning predictor variable homo-
geneity (i.e. partitioning maximum homogeneity at each step
may occlude some interactions and latent relationships; De’ath
& Fabricius 2000). However, given the poor initial performance
in this study, CART was not a candidate for further model refine-
ment, but considering variable importance should be included in
future studies.

On the other hand, random forest and boosted CART, which
are derivatives of the CART formulation, produced highly
accurate models by parameterizing a suite of models and
reporting an average prediction. Additionally, random for-
est, boosted CART, and SVM have been shown to perform
better on high-dimension datasets (Huang et al. 2002; Oom-
men et al. 2008). Conversely, in agreement with our findings,
naïve Bayes and k-NN (second and third least predictive over-
all) have lower performance on high-dimension datasets due
to a sensitivity to irrelevant predictor variables (Kotsiantis
et al. 2007).

Although MLAs (e.g. random forest, CART, ANN) can
produce highly predictive models, shortcomings may limit
their adoption as research and planning tools. Machine learn-
ing models can produce overly complex models compared
to maximum likelihood procedures where parsimony was
prioritized (Halvorsen 2013). Moreover, the “black-box”
formulation of MLAs limits interpretation and model com-
plexity can quickly exceed human cognitive abilities (i.e.
the “curse of dimensionality”; Bellman 1957). While certain
graphical techniques (e.g. partial dependence plots) can aid
visualization of simple relationships, the inherent difficulty
of interpreting MLAs limits their use for directly assessing

ecological relationships and complicates communication of
findings.

The Advantages of a Model Comparison Approach
and Independent Validation

The rankings in predictive power among the models tested
in this study may offer—generalized guidelines. For example,
we identified that a suite of candidate models should be tested
to identify which will be the most appropriate. We found random
forest and boosted CART to have the greatest overall predictive
accuracy, both have a record of exceptional accuracy in the
literature (e.g. Prasad et al. 2006; Cutler et al. 2007; Elith et al.
2008), and should be considered first in future studies. However,
other models such as SVM and boosted logistic models have
similar records and may prove to be more accurate when used on
coarser datasets or with a large number of potentially irrelevant
predictors (Huang et al. 2002; Kotsiantis et al. 2007; Oommen
et al. 2008). We acknowledge that a large model comparison
procedure, such as that reported in this study, may be untenable
for certain projects. We thus encourage future researchers to test
as many models as is feasible and to understand that acceptable
thresholds for what determines a “good” model will be specific
to a given dataset.

A model comparison approach may also identify situations
where model-averaged ensemble predictions can be advanta-
geous or not. Model averaging is often used to homogenize
across individual model idiosyncrasies, supposedly with greater
transferable predictive power (e.g. Buisson et al. 2010; Elith
et al. 2011). In this study, the ensemble model using only
Field-Data was well above average in terms of predictive accu-
racy, but it was less predictive than several individual models
that had been refined though variable reduction, suggesting that
a model-averaging approach may limit predictive power in cer-
tain situations.

Predictive accuracy was markedly improved by reducing the
number of predictors based on importance rankings. However,
predictive accuracy was not impacted by randomly subsam-
pling the calibration data to ensure there was an equal num-
ber of presences and absences. Interestingly, both findings are
contrary to previous studies (Chawla et al. 2003; Chen et al.
2004; Cutler et al. 2007; Evans et al. 2011). The enhanced
predictive power obtained by reducing the number of pre-
dictors is especially relevant because it contradicts a com-
mon assumption that many MLAs, which automatically select
important predictors, are immune to model overfitting (Huang
et al. 2002; Cutler et al. 2007). Instead, our findings suggest
that the larger All-Data group produced less predictive models
because many of the formulations may have selected irrelevant
variables.

Another concern is for future studies to report overly opti-
mistic measures of predictive accuracy by not validating models
on data that are independent from those used for model calibra-
tion. Our results show that model accuracy can be considerably
less when tested on independent data (up to 23%; Fig. 4),
indicating that even with repeated k-fold cross-validation,
model overfitting can lead to a reduction in predictive power.
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Given that access to spatially and temporarily independent
testing datasets is uncommon, we encourage practitioners and
researchers to split datasets into calibration and testing sets
before data preprocessing and model development. We addi-
tionally emphasize the collection of a separate validation dataset
should be considered and prioritized during the study planning
and design phase (Hooten & Hobbs 2015; Houlahan et al.
2017).

Model Refinement and Improving System Understanding

Predictive model goals differ from those of models devel-
oped for hypothesis testing and inference with the former
being focused on demonstrating understanding through pre-
dictive power, whereas the latter is concerned with develop-
ing system understanding through hypothesis testing (Halvorsen
2012; Houlahan et al. 2017). The framework we propose in
this study bridges these goals by maximizing predictive accu-
racy, while also developing system understanding through vari-
able importance rankings and assessing model agreement in
relation to environmental gradients. In this regard, the consis-
tency with which variable importance was ranked across models
lends defensible and novel insight into study-system behavior.
The development of similar rankings could be key in guiding
researchers and land managers to prioritize measurements in
future work to maximize their predictive accuracy and ecologi-
cal understanding.

The degree of model agreement regarding sagebrush pres-
ence or absence varied in relation to landscape features, but
model agreement of no occupancy was generally greater in
areas with low mean annual precipitation, high annual grass
cover, and lower fertile island cover. Specific to the findings of
this study, these characteristics generally correspond to areas
widely regarded as low resistance and resilience landscapes
for sagebrush reestablishment after fire (Maestas et al. 2016).
Thus, models widely agreeing on the absence of sagebrush in
this area are not surprising. However, the variability among
models in the middle and upper ranges of precipitation and
the lower ranges of exotic annual grass cover underscores the
importance of landscape heterogeneity in determining the pre-
dictability of restoration outcomes. In addition, future studies
may consider that model selection and uncertainty could be con-
strained more by landscape characteristics unique to a system
rather than model formulation or framework, which may also
vary as response variables traverse gradients in predictability
(Laughlin et al. 2017).
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